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Abstract. We calculate the universal pan F of the free energy of rectangular domains at 
critical points by use of conformal field theory. F includes a term logarithmic in the size 
(or area), due IO the comers. In addition, there is a term Fo depending on the aspecl ratio, 
which we determine by integrating the stress tensor (T) over the rectangle. This term 
involves complete elliptic integrals, but may be more simply expressed in terms of the 
Dedekind vfunction. For central charge e>O, we find that Fo is maximal for squares, 
providing a thermodynamic driving force for the elongation of Small domains, and argue 
that this should be a general tendency. 

1. Introduction 

The free energy of a finite two-dimensional region or domain may generally be written :.. +La &---.- 
111 U,= I V L I I .  

Ftot=.foA +&E + F (1) 

where A is the area of the domain, E the edge length,f, the free energy per unit area, 
and fi the free energy per unit edge length, with all free energies in units of k.T (in 
equation (1) and below). In the thermodynamic limit the termf, dominates, while for 

independent constant. However, at criticality, it may depend on the size and shape of 
the domain. Indeed, Cardy and Peschel [l]  have shown that corners on the boundary 
induce a trace anomaly in the stress tensor. This gives rise to a term in F proportional 
to In L, where L measures the size of the domain. (There are similar effects arising 
from curved boundaries or metrics, but we are not concerned with them here.) Such - eeometry dependence is possible at criticality since the correlation length is infinite, 
allowing one side of the domain to influence the other. 

In this work we calculate the universal (geometry-dependent) part of F for an L 
by L‘ rectangle at conformally invariant critical points as 

sma!!er domainsf; hPC0EPS important. !n most circW”ances, the !er% F is a geQme!ry- 

F =  -c/81n A+c/4In[q(q)q(q’)l  (2) 

where c is the central charge, q =exp(-2nx) and q‘=exp(-2n/x) with x the aspect 
ratio L’ /L ,  and 11 the Dedekind function. Equation (2) applies for any conformally 
invariant (uniform) boundary condition around the edge of the rectangle. It is known 
[2] that in a given theory the number of such boundary conditions is the same as the 
number of conformal blocks. More generally, equation (2) is an example of the Casimir 
effect [3], first encountered in quantum electrodynamics. 
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The termsfo and f, in equation (1) are non-universal, and cannot be calculated by 
model-independent methods. However, Cardy 141 has shown tbatf, > 0 for the minimal 
models with free boundary conditions. This sign coincides with physical expectations, 
since it prefers domains of compact shape. 

We proceed by computing the derivative of F with respect to L'. Aside from the 
trace anomaly term [l], this is given by a line integral of the stress tensor (T )  in the 
rectangular geometry. ( T ) ,  in turn, is determined by the Schwarz derivative of the 
Schwarz-Christoffel transformation from the half plane to the rectangle. We give 
expressions for the indefinite integral of ( T )  in the rectangle, which may be useful in 
other calculations. Next we include the trace anomaly (In L) term, which is easily 
determined. Our initial form for F includes a combination of complete elliptic integrals. 
However, these can be more simply expressed in terms of the Dedekind 7-function, 
as quoted above. This observation allows for a simple approximation to the x-dependent 
term. This quantity is proportional to the central charge c. When c > 0, it is minimal 
for large (or small) aspect ratio x. Thus it provides a thermodynamic driving force for 
elongation, acting in competition with the edge term. We also argue that the decrease 
of free energy with elongation should be a general effect. Such behaviour may in fact 
be manifest in very small domains on real surfaces [SI. 

If operators with negative dimensions are present, the free energy may include 
extra terms, as has already been pointed out for the case of an infinite strip with 
periodic boundaries [6] and actually occurs for the Lee-Yang edge singularity [7]. We 
argue below that equation (2) remains valid even in this case because the boundary 
conditions of the rectangle allow coupling only to the conformal block of the unit 
operator [8]. 

Related results for specific heats and correlation functions in finite domains at the 
king critical point have been obtained via conformal techniques [9]. It is interesting 
that the correction to the leading (x+O or x+m)  shape dependence in equation (2) 
resembles the shape dependence of the free energy of the simple king model on a 
torus [lo], which involves elliptic 0 functions, and may be understood in terms of a 
one-dimensional array of domain walls [l l l .  

2. Calculation of the free energy 

The change in F induced by a general coordinate transformation z+ z+  m ( z ) .  where 
z=x+iy ,  is [I21 

SF=(1/2.rr) d2r(K,)da'/dr, (3) I 
where ( K , )  is the expectation value of the stress tensor and the integral extends over 
the domain in question. Now we consider a rectangle in the w = U + io plane, of length 
L in the U (horizontal) and L' in the o (vertical) directions, respectively. The transfor- 
mation 

U'U U +  U +  So Q(u - UO) (4) 

where Q is a unit step function and O <  uo< L' stretches the rectangle in the U direction, 
so that L'+L'+Su. Thus, equation (3) becomes [12] 



Free energy of rectangular domains at criticality 3409 

We denote the free energy Fo in anticipation of an additional term not included in 
equation ( 5 )  which will be discussed below. To evaluate equation (9, we take advantage 
of the behaviour of the stress tensor under a (finite) conformal transformation [131, 

T ( z )  = (dw/d~)~T(w)+(x/12){w,  I} ( 6 )  

where the curly brackets denote the Schwarz derivative 

Is., -1 - I..,,,,..,, - ~ / . . . , , ~ 2 1 / ~ . . . , ~ 2  
l r * ~ ~ l - L "  2\N I J I \ " I  

and obeys a similar equation. 

m at i o n , 
If z is the coordinate in the half plane, ( T ( z ) )  = 0. The Schwarz-Christoffel transfor- 

w(0) = 0 ( 8 )  

maps the upper half plane on to a rectangle. The points z=  *I,  * l / k  on the real axis 
are transformed into the corners at w = *K(k), iK(k )+ iK ' (k ) ,  respectively. Here K 
and K '  are complete elliptic integrals of the first kind with module k, 0< k <  1. Thus 
L = 2 K ,  L'= K '  and the aspect ratio becomes 

dw/dz=l / [ ( l -z*) ( l -k  2 z 2 )] 1/2 

x=K'/ZK. (9) 

Making use of equations (6) and ( 8 ) ,  one finds after some algebra that 

( T (  w)) = -(c/12)[( 1 - 3 k 2 z 2 )  + k2+5z2( 1 - k 2 z 2 ) / (  1 - z 2 )  

+(3k4/2)z2(1 -zZ)/[l -k2z2) ] .  (10) 

using equations (8) and ( 10) i t  is easy to show that a_s w + WO, where wg is the cQQrrlina!c 
of a corner of the rectangle, (T(w))+ -(c/8)/(w- w ~ ) ~ ,  the correct form for a right 
angle corner [ 11. 

Transforming the expression for SF,, equation (9, into the z plane, and making 
use of equations (8) and ( I O ) ,  one can calculate the RHS by contour integration. The 
contributing singularities are taken as two poles connected by a branch cut on the real 
axis. The contribution of the 7 term is used to close the contour. The result is 

SFo/Su = ( c / 6 . i r ) [ 2 K ( k ) - i k 2 K ( k ) - 3 € ( k ) ]  (11) 

where € is a complete elliptic integral of the second kind. The derivative of Fo with 
respect to L' then follows by scale invariance, 

d Fo/dL' = ( 2 x 1  L)SF,/Gu. (12) 

By considering the behaviour of the elliptic integrals as k+O, one can verify that 
equation (11) reproduces the known [14] limiting behaviour for large aspect ratio (i.e. 
for an infinite strip), namely 

dF/dL'= -~.ir/24L. (13) 

The corresponding expression for an infinite strip in the perpendicular direction is 
similarly obtained by taking the limit x + 0 ( k  + 1). These conclusions are not altered 
by the inclusion of the logarithmic term in F discussed below. 

One may also determine 6Fo by performing the integration in equation ( 5 )  in the 
w plane. The details of this calculation are described in the appendix. 
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Now the free energy must be invariant under the modular transformation S, i.e. 
interchange of L and L'. It follows that F, if it were a function of x only, must 
necessarily be symmetric in x c* l /x ,  so that dF /dL '=  0 for a square ( L  = L'). Equation 
(12). however, does not vanish for x = 1 (k = 0.171 573.. .).This is because the transfor- 
mation we have employed, equation (4), changes the area A of the rectangle and there 
is a term in F proportional to In A due to the corners. The formula given in equation 
( 5 )  and hence our result (equation (12)) miss this effect because they assume that the 
stress tensor has trace (0) = 0, while the singularity of the Schwarz-Christoffel transfor- 
mation at the corners of the rectangle mentioned above implies a non-zero value for 
(0) [l]. This situation may he remedied by simply adding a term -(c/4) In L to Fn, 
consistent with the prescription in [ 11. With this additional term (dF/dL'), vanishes 
for x = 1, as it must. 

It is possible to express F in a more compact form, explicitly displaying its x 
dependence, by use of the Dedekind q-function [15] 

We set q =exp(-Z.rrx), and make use of the relations [15, 161 

d K / d k =  E/kk"-K/k (15) = 2l/3kl/l2kVl/3Kl/2 T1/2 / 
where k'2 = 1 - k2, along with equation (9), and the Legendre relation 

E K ' f  E'K - K K ' =  n/Z. (16) 

It follows that 

F n =  c/z In v(q) (17) 

satisfies equation (12), and that 

F = -c/4 In L+ c/2 In q ( q ) .  (18) 
In writing equation (18) we have ignored a possible geometry-independent additive 
constant. Using equation (18) and the modular properties of F or 1) leads directly to 
the symmetric form of equation (2). 

3. Further remarks 

The definition of q (equation (14)) suggests a first approximation to equation (2) 

F = - c / 8 I n A - c ~ / 2 4 ( x + l / x )  (19)  

which has the proper area dependence and preserves the correct limiting behaviour 
as x +  0 or Co. The shape-dependent term in equation (19) is 1.98.. . times the exact 
result at x =  1; this ratio decreases slowly with x (1.29,. , and 1.11 . , . at x = 10 and 
50, respectively) and is symmetric in xc)  l/x. 

Now for c>O, if the area is fixed and the shape varied, the approximate F is 
maximal for a square (x = 1) as is the exact result. So there is a thermodynamic driving 
force for elongation of the domain. This may be regarded as due to an attraction of 
the walls of the rectangle, with a force per unit length inversely proportional to the 
square of their separation. Thus the tendency to elongation should be a general effect, 
not limited to domains of rectangular shape. Hence the shape dependence in equation 
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(19) may be more widely useful [SI. In fact, it follows from equations ( 5 )  and (6) that 
6F = 0 for a circle, since this figure can be mapped to the half plane via a projective 
transformation, for which the Schwarz derivative vanishes. Thus F is extrema1 for any 
set of figures interpolating between infinite strips and including a circle, e.g. ellipses 
with x replaced by the ratio of the axes. 

In addition, one expects a similar tendency to elongation to extend into the critical 
region. The attraction of the walls arises since the correlation length 6 is infinite at 
criticality, allowing one wall to influence the other. On the other hand, the free energy 
of a finite domain must be continuous, so there should be similar behaviour whenever 
the system is close enough to criticality that (> L, L’. 

Equation (18) has been derived for the king model with fixed boundary conditions 
by an argument based on  operator content and modular invariance [17]. Essentially, 
this result follows from knowledge of the corner term -c/41n L and the fact that F 
involves an analytic function of q. In these circumstances, use may be made of the 
known classification of modular invariant functions [18]. Note that analyticity in q 
implies invariance under the other modular operation, T: x +  x-i. An argument 
directly demonstrating the T invariance or analyticity in the general case would be 
interesting. 

I t  is also interesting to interpret our result in terms of transfer matrices in the 
infinite strip (see [12], for instance). Then the partition function may be expressed in 
terms of a sum over eigenstates of the primary operators. It follows immediately from 
equation (18) that only the conformal tower of the unit operator contributes. In the 
present case the partition function is the expectation value (and not the trace) of a 
power of the transfer matrix between boundary states. Since these states do  not couple 
to operators with fractional dimensions h > 0 for theories where all dimensions hi are 
positive, one expects the same to hold true when there are operators with dimension 
h < O  [8]. Thus equation (18) or (2) will be valid in this case as well, and the Casimir 
energy of a long strip will not be corrected by hmi,, as occurs for an infinite strip with 
periodic boundaries [ 6 ] .  
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Appendix 

The inverse Schwarz-Christoffel transformation is given by the Jacobian elliptic 
function 

z = s n  w. (AI) 

(A2) 

( T ( w ) ) = - ~ ( l + k 2 ) + ~ ( k ’ c n 2  w/dn2 w+dn’w/cn’ w). (A3) 

Substituting this into equation (IO) and making use of the relations 

1 - k2z2 = dn’ w 2 I - z 2 = c n  w 

one finds 
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The indefinite integral in equation ( 5 )  is then 

P Kleban and I Vassileva 

(T) dw =f(5-k2)w +4(k2 sn w cn w/dn w+sn w dn w/cn w)-3E(am w, k) (A4) 1 
where am w is the amplitude. Evaluating the definite integral leads once again to the 
result obtained by integration in the z plane, equation (11). 
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